Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 468(1-2): 169-183, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32222880

RESUMO

Population data have consistently demonstrated a correlation between circulating branched-chain amino acids (BCAA) and insulin resistance. Most recently valine catabolite, 3-hydroxyisobutyrate, has emerged as a potential cause of BCAA-mediated insulin resistance; however, it is unclear if valine independently promotes insulin resistance. It is also unclear if excess valine influences the ability of cells to degrade BCAA. Therefore, this study investigated the effect of valine on muscle insulin signaling and related metabolism in vitro. C2C12 myotubes were treated with varying concentrations (0.5 mM-2 mM) of valine for up to 48 h. qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Insulin sensitivity (indicated by pAkt:Akt), metabolic gene and protein expression, and cell metabolism were also measured following valine treatment both with and without varying levels of insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Valine did not alter regulators of mitochondrial biogenesis or glycolysis; however, valine reduced branched-chain alpha-keto acid dehydrogenase a (Bckdha) mRNA (but not protein) expression which was exacerbated by insulin resistance. Valine treatment had no effect on pAkt:Akt following either acute or 48-h treatment, regardless of insulin stimulation or varying levels of insulin resistance. In conclusion, despite consistent population data demonstrating a relationship between circulating BCAA (and related metabolites) and insulin resistance, valine does not appear to independently alter insulin sensitivity or worsen insulin resistance in the myotube model of skeletal muscle.


Assuntos
Aminoácidos de Cadeia Ramificada/efeitos dos fármacos , Resistência à Insulina , Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Valina/farmacologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Insulina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
J Cell Biochem ; 121(1): 816-827, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31385363

RESUMO

Metformin has antihyperglycemic properties and is a commonly prescribed drug for type II diabetes mellitus. Metformin functions in part by activating 5'-AMP-activated protein kinase, reducing hepatic gluconeogenesis and blood glucose. Metformin also upregulates peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α). Several population studies have shown levels of circulating branched-chain amino acids (BCAA) positively correlate with insulin resistance. Because BCAA catabolic enzyme content is regulated by PGC-1α, we hypothesized metformin may alter BCAA catabolism. Therefore, the purpose of this work was to investigate the effect of metformin at varying concentrations on myotube metabolism and related gene and protein expression. C2C12 myotubes were treated with metformin at 30 uM (physiological) or 2 mM (supraphysiological) for up to 24 hours. Metabolic gene expression was measured via quantitative real time polymerase chain reaction, protein expression was measured using Western blot, and mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Supraphysiological metformin upregulated PGC-1α mRNA expression along with related downstream targets, yet the reduced expression of electron transport chain components as well as basal and peak cell metabolism. Supraphysiological metformin also suppressed branched-chain aminotransferase 2 (BCAT2) and branched-chain-alpha-keto acid dehydrogenase E1a (BCKDHa) mRNA expression as well as BCAT2 protein expression and BCKDHa activity, which was accompanied by decreased Kruppel-like factor 15 protein expression. Physiological levels of metformin suppressed BCKDHa and cytochrome c oxidase mRNA expression at early time points (4-12 hours) but had no effect on any other outcomes. Together these data suggest metformin may suppress BCAA catabolic enzyme expression or activity, possibly reducing levels of circulating gluconeogenic substrates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Fibroblastos/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Fibroblastos/efeitos dos fármacos , Glicólise , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Biogênese de Organelas
3.
Biochimie ; 168: 124-133, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31682874

RESUMO

Elevated circulating branched-chain amino acids (BCAA) such as leucine have been consistently correlated with increasing severity of insulin resistance across numerous populations. BCAA may promote insulin resistance through either mTOR-mediated suppression of insulin receptor substrate-1 or through the accumulation of toxic BCAA catabolites. Although the link between circulating BCAA and insulin resistance has been consistent, it has yet to be concluded if BCAA causally contribute to the development or worsening of insulin resistance. This work investigated the effect of leucine both with and without varying levels of insulin resistance on metabolism, metabolic gene expression, and insulin signaling. C2C12 myotubes were treated with and without varied concentrations of leucine up to 2 mM for 24 h both with and without varied levels of insulin resistance. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Mitochondrial metabolism was measured via O2 consumption. Leucine at 2 mM increased oxidative metabolism as well as gene expression of mitochondrial biogenesis, which was associated with increased cellular lipid content. Despite increased lipid content of leucine-treated cells, neither acute nor chronic leucine treatment at 2 mM affected insulin signaling in insulin sensitive, mildly insulin resistant, or severely insulin resistant cells. Similarly, leucine at lower concentrations (0.25 mM, 0.5 mM, and 1 mM) did not alter insulin signaling either, regardless of insulin resistance. Leucine appears to improve myotube oxidative metabolism and related metabolic gene expression. And despite increased lipid content of leucine-treated cells, leucine does not appear to alter insulin sensitivity either acutely or chronically, regardless of level of insulin resistance.


Assuntos
Insulina/metabolismo , Leucina/farmacologia , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Animais , Linhagem Celular , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Biogênese de Organelas
4.
Nutr Res ; 66: 22-31, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31051319

RESUMO

Branched-chain amino acids (BCAAs) are essential in the diet and may provide benefit for those who partake in regular physical activity and resistance training, yet circulating BCAAs have been repeatedly shown to correlate with severity of insulin resistance in obese/diseased populations. Recently, the valine catabolite 3-hydroxyisobuterate (3HIB) was shown to promote insulin resistance in skeletal muscle by increasing lipid content in vivo. The purpose of this study was to investigate the mechanistic effects of 3HIB on skeletal muscle insulin signaling, metabolism, and related gene expression in vitro. Given these previous observations, we hypothesized that 3HIB would depress skeletal muscle metabolism and insulin sensitivity. C2C12 myotubes were treated with 3HIB for up to 48 hours using both physiological (25-100 µmol/L) and supraphysiological (5 mmol/L) concentrations. Metabolic gene expression was measured via quantitative real-time polymerase chain reaction, mitochondrial metabolism was measured via O2 consumption, and glycolytic metabolism was quantified using extracellular acidification rate. Western blot was used to assess insulin sensitivity following insulin stimulation (indicated by phospho-AKT expression). 3HIB did not alter expressional indicators of mitochondrial biogenesis, glycolysis, BCAA catabolism, or lipogenesis. Chronic physiological 3HIB treatment significantly increased peak oxygen consumption, whereas supraphysiological 3HIB treatment suppressed basal and peak mitochondrial and glycolytic metabolism. Both physiological and supraphysiological 3HIB reduced pAkt expression during insulin stimulation. These findings suggest that 3HIB may reduce muscle insulin sensitivity in cultured myotubes, supporting a potentially causal role of 3HIB in the development of insulin resistance in highly metabolic cell types.


Assuntos
Hidroxibutiratos/administração & dosagem , Insulina/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Mioblastos , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Lipids ; 53(11-12): 1043-1057, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30706482

RESUMO

Branched-chain amino acids (BCAA) such as leucine stimulate favorable metabolic processes involved in lean tissue preservation and skeletal muscle metabolism. However, higher levels of circulating BCAA correlate with severity of metabolic disease (including diabetes/insulin resistance), and may result from dysregulated BCAA catabolism. Past observations have demonstrated potential interaction between BCAA and dietary fat; however, much of this relationship remains underexplored. This study investigated the effect of leucine both with and without palmitate on oxidative and glycolytic metabolism, as well as indicators of BCAA catabolism using cultured skeletal muscle cells. Specifically, C2C12 myotubes were treated with or without varying concentrations of leucine both with and without palmitate for 24 h. Leucine treatment significantly elevated mRNA expression of metabolic regulators including peroxisome proliferator-activated receptor-gamma coactivator 1-alpha versus leucine with concurrent palmitate treatment. Interestingly, leucine-only, palmitate-only, and leucine with palmitate all significantly increased cellular lipid content, which translated into significantly increased oxidative capacity under substrate-limited conditions. However, upon the addition of excess substrate and carnitine, discrepancies in peak metabolic capacities between various treatments were no longer observed, suggesting leucine, palmitate, or the combination thereof causes a shift in metabolic preference from glycolytic to oxidative. These data also suggest leucine's effect on mitochondrial metabolism may result in part from increased lipid stores in addition to other previously documented pathways.


Assuntos
Leucina/farmacologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Palmitatos/farmacologia , Aminoácidos de Cadeia Ramificada/sangue , Animais , Linhagem Celular , Sobrevivência Celular , Gorduras na Dieta/efeitos adversos , Resistência à Insulina/fisiologia , Camundongos , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...